Logic and Bounded-Width Rational Languages of Posets over Countable Scattered Linear Orderings

نویسنده

  • Nicolas Bedon
چکیده

In this paper we consider languages of labelled N -free posets over countable and scattered linear orderings. We prove that a language of such posets is series-rational if and only if it is recognizable by a finite depth-nilpotent algebra if and only if it is bounded-width and monadic second-order definable. This extends previous results on languages of labelled N -free finite and ω-posets and on languages of labelled countable and scattered linear orderings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Variable Logic over Countable Linear Orderings

We study the class of languages of finitely-labelled countable linear orderings definable in twovariable first-order logic. We give a number of characterisations, in particular an algebraic one in terms of circle monoids, using equations. This generalises the corresponding characterisation, namely variety DA, over finite words to the countable case. A corollary is that the membership in this cl...

متن کامل

A Kleene Theorem for Languages of Words Indexed by Linear Orderings

In a preceding paper, Bruyère and Carton introduced automata, as well as rational expressions, which allow to deal with words indexed by linear orderings. A Kleene-like theorem was proved for words indexed by countable scattered linear orderings. In this paper we extend this result to languages of words indexed by all linear orderings.

متن کامل

Regular Languages of Words over Countable Linear Orderings

We develop an algebraic model for recognizing languages of words indexed by countable linear orderings. This notion of recognizability is effectively equivalent to definability in monadic second-order (MSO) logic. The proofs also imply the first known collapse result for MSO logic over countable linear orderings.

متن کامل

Complementation of Rational Sets on Countable Scattered Linear Orderings

In a preceding paper (Bruyère and Carton, automata on linear orderings, MFCS’01), automata have been introduced for words indexed by linear orderings. These automata are a generalization of automata for finite, infinite, bi-infinite and even transfinite words studied by Büchi. Kleene’s theorem has been generalized to these words. We prove that rational sets of words on countable scattered linea...

متن کامل

Tree Automata and Automata on Linear Orderings

We show that the inclusion problem is decidable for rational languages of words indexed by scattered countable linear orderings. The method leans on a reduction to the decidability of the monadic second order theory of the infinite binary tree [9]. Mathematics Subject Classification. 68Q45, 03D05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009